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Abstract. The operation of a laser-heated thermogravitational column is theoretically 
analysed. Attention is focused on columns to be used to measure thermal diffusion factors 
in liquid mixtures. It is found that the steady separation is quite insensitive to the ratio of the 
light beam semi-width to the tube radius. The comparison with the results for concentric- 
tube type columns shows that it is possible to design small laser-heated columns having 
separations and relaxation times similar to the conventional units currently used to determine 
thermal diffusion factors. 

1. Introduction 

During the last few years some authors (Klein et a1 1981, Arisawa et a1 1982) have 
reported both theoretical and experimental work on the separation of gas mixtures in 
laser-heated (LH) thermogravitational columns. Laser light absorption in the gas, instead 
of the conventional Joule heating of an axially installed wire, furnishes the primary non- 
uniform temperature field that is needed for the subsequent segregation of the mixture. 
The above work emphasises aspects related to the separation of both isotopic and non- 
isotopic mixtures. 

The present paper is concerned with a theoretical analysis of the potential advantages 
of themode of light heating in the operation of thermal diffusion (TD) columns specifically 
designed to measure Fickian and thermal diffusion coefficients, D and DT, of liquid 
mixtures. At present, it is well established that the theory giving the relevant peculiarities 
of the separation process in concentric-tube (CT) columns is accurately supported by 
experimental results (Horne and Bearman 1968, Stanford and Beyerlein 1973, Navarro 
et a1 1985, Ecenarro et a1 1989). Corrections for non-ideal geometry and density effects 
(forgotten effect) can also be properly accounted for, as has recently been proved 
(Ecenarro et a1 1990). Although the light heating induces temperature fields quite 
different from those established through the Joule effect, the remaining physical mech- 
anisms that lead to the final separation are identical in both cases. All this makes the 
problem particularly amenable for a theoretical description along the same lines as the 
standard theory for CT columns first given by Furry et a1 (1946). Figure 1 shows a line 
drawing of the idealised CT and LH columns. 
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Figure 1. A line drawing of the CT and LH liquid 
thermal diffusion columns. A, working space; B, 
connections to circulating cooling water; C, con- 
nections to circulating heating water; D, sampling 
ports; E, filling and draining connections; F, mir- 
rors; G, heating laser beam. 

In standard TD practice, the separation units are designed to give a high amplification 
of the elementary separation effect, which is usually very small. This task is conveniently 
accomplished by using units of quasi-plane geometry, i.e. with a value of the ratio of the 
radii of the two concentric tubes very close to unity and consequently very small annular 
gap width. In these units the steady-state Rayleigh separation factor between the column 
ends, q,  depends on the total column length, L ,  and on the width of the annular gap, w, 
as lnq cc L w - ~ .  For this reason, large columns with small gap width are currently 
selected. Typical values of column dimensions are: L = 250 mm and w = 1 mm. 
However, this selection has two serious drawbacks. The first one is the well known 
constructional difficulty that such a design presents. The other is the undesirably long 
separation time associated with the quasi-plane geometry. It must be remembered that 
the characteristic time, t,, is of the order of tr L2w-6, which does not favour areasonable 
compromise between high separation and short time. 

In the present theoretical treatment of light-heated TD columns some restrictive 
assumptions are used. It is assumed that: (i) the temperature differences in the fluid 
mixture are sufficiently small that the temperature dependence of the physical properties 
can be ignored; (ii) the vertical attenuation of the heating light beam is low enough that 
all the column cross sections can be considered to be in a thermally equivalent situation; 
and (iii) axial remixing effects due to vertical Fickian diffusion in liquid mixtures can be 
safety neglected. Assumptions (i) and (iii) are the standard ones in the theoretical 
treatment of liquid columns (Horne and Bearman 1968). The second assumption only 
holds for small optical densities (Scholz 1987). 

These basic assumptions are applicable under the usual working conditions to 
determine D and D, from column separation measurements and allow one to compare 
the results obtained with the previous ones reported by Slieker (1965) for CT columns. 
In particular, it is found that LH units of small size have performances of the same order 
as the standard CT columns. 

2. Light heating 

Under the assumptions quoted above, the temperature field is given by the solution of 
the stationary heat equation 

K V ~ T  = q ( r ,  z )  (1) 
where Tis the temperature, K is the thermal conductivity of the mixture, Q, is the strength 
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of the local heat sources, and r and z are cylindrical coordinates in the tube. For a light 
beam weakly attenuated in its path along the column, d,cp = 0. Moreover, it seems 
reasonable to accept a heat source distribution of Gaussian type, 

where U is the semi-width of the light beam, and Q is the total heat amount being 
deposited into a fluid slab of unit length and very large radius. Actually, only a fraction 
of this power, Q,/Q,  is absorbed in each cross section of the tube of radius r l .  By 
integrating equation (2)  we get 

q(r) = ( Q / 2 n a 2 )  exp(-r2/2a2) (2) 

Q,/Q = 1 - exp( - r : /2a2) .  (3) 
The solution of equations ( 1 )  and (2)  gives the temperature field inside the separation 
tube. The required boundary conditions are: (i) T = T1 at r = r l ,  and (ii) the temperature 
must remain finite on the axis of the tube. In terms of the non-dimensional quantities 

x = r2 /2a2  xo = r: /2a2 (4) 
we obtain for the temperature distribution 

T - T1 = AT[1 - f(x)/f(xo)l 
where 

f(x) = rX [exp(-x) - 11 dx/x = -[E@) + lnx + y] 

Here T2 is the temperature at the centre of the tube, E(x)  is the exponential integral and 
y is the Euler constant. The temperature difference AT will be taken in the following as 
an indirect estimate of the heating effects of a given light beam into the particular chosen 
geometry. The values of E(x)  required in the numerical calculations were obtained from 
the literature. According to equations ( 5 )  and (6) for small values of xo, the temperature 
profiles are linear in x. This limit case will be considered later. Large deviations from 
linearity arise for xo > 1. 

3. The convection field 

The convection pattern is obtained by solving the Navier-Stokes equation in the Bous- 
sinesq approximation. For a velocity field in the form U, = U  = v(r ) ,  we have the hydro- 
dynamic equation 

q*V2u = p g  + a,p (8) 
where p is the density, q* the viscosity, p the fluid pressure and g the acceleration of 
gravity (starred fluid properties are to be evaluated at the mean temperature). By 
assuming, as customary, the density to be a linear function of T,  and taking into account 
that the Poiseuille-like term does not depend on r ,  equation (8) in terms of x is 

d,[x d,v] = A[f(x) + constant] (9) 
where 

A = p * P * g a 2 A T / 2 q * f ( x o )  
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/3* being the thermal expansivity coefficient. The velocity U must remain finite at x = 0 
and cancels out at x = xo. Under the two boundary conditions, the solution of equation 
(9) is 

= 4F(x) - F(x0)l (10) 

(11) 

where the function F(x) is given by 

F(x) = f ( x )  + x f ( x )  + [exp(-x) - 13 + Cx. 

The constant Cis to be obtained by demanding mass flux cancellation through each cross 
section of the tube. In terms of the flow function defined by 

g(x) = A-' 1' u dx 
0 

this condition is equivalent to g(xo) = 0. 
Introducing equation (10) into equation (12) and integrating, we obtain for g(x) 

g(x)  = [ x 2 f ( x )  + 2xf(x)  + ( x  + 1) exp( - x )  + x2/2 + Cx2 - 2F(xo)x - 1]/2. (13) 
The flow pattern calculated from the above expressions correspond to an upwards hot 
flow close to the symmetry axis of the tube, which is balanced by a return cold fluid 
current descending close to the tube wall. 

4. The column transport coefficients 

Knowledge of the temperature field and the convection pattern allow determination of 
the thermodiffusive and convective column coefficients H and K,, respectively, which 
are the quantities relevant in evaluating the column separation. These coefficients 
appear in calculating the transport of species through a column cross section from the 
continuity equation (Ecenarro et aLl989). In the Slieker (1965) notation, they are given 
for cylindrical geometry by 

H =  - 2 n L '  [ad,(lnT) j j b p u r d r ) ] d r  (14) 

K, = 2n 1,' [ (pD)-l ( 1, pur dr) '1 dr/r. 
0 0 

Introducing equations (4), ( 5 )  and (12) into equations (14) and (15), the coefficients H 
and K, can be written as customary in the form 

H = (2~/6!)(a*p*~P*g/q*)[(AT)~/T*] rth 

K,  = (2n/9!) (p*  3/3* 2 g 2 / q  * 2D*)  (AT) r f k  
(16) 

where h and k are the so-called column shape factors, which only depend on x,, and are 
given by 
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Figure 2. Shape factors h and k for the LH and a cases. The quantities 4h, 4k and 4(r2/r,) 
are actually displayed for the cr case. 

Although the calculation of h and k can be performed analytically, it does not offer any 
particular advantage and we have done it numerically. The results are displayed in figure 
2, for purposes of comparison with the corresponding results for CT columns, as a 
function of fi a/rl. As can be seen, both coefficients vanish for fi a/rl + 0 and tend 
to constant values for fi u/rl 3 1. 

5. Results for concentric-tube columns 

Reriiltc fnr the PT care have heen nreviniiclv rennrted hv Clieker 11965) Hnwever it ic --r -, --.-- --- ,-,--,. * --.,-,--, ...- r-- I ---I- -.-l-...- --* .-̂ - -. ---- ..-. - ---.- 
pertinent to quote some of them here in order to make the comparison between the two 
heating modes easier. 

The temperature field is now given by 
T - T ,  = ATlny/lnyo (19) 

Y = (dr1)2  Y o  = (r2/r1)2 (20) 

with 

where rl and r2 are the radii of the outer and inner tubes, respectively. The solution of 
equation (8) gives the corresponding velocity field. One obtains 

where A is here 
U = h [y In y + A(l  - y) + B In y] (21) 

A = - (r2 1P * P * &w)/(47*lnyo) 

and 

A = ln Y O  [ I -  Y: - ~ Y O O  - Y O )  - 2 ~ ;  lnyol lP(1 -YO)] 

€3 = KY! - 1) - 2Yo 1nyollD 
D = 2 lnyo (1 + yo) + 4(1 - yo). 
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Introducing the temperature and velocity fields in equation (14), in terms of the flow 
function defined by 

g(y) = A - l  J y  v dy 
YO 

we obtain for the shape factors corresponding to CT columns the following expressions: 

Figure 2 shows the numerical results obtained for h and k as a function of r2 /r1 .  
The Slieker (1965) paper also includes the diffusion remixing coefficient Kd,  which 

does not contain any hydrodynamical flow feature and is relevant in the case of gaseous 
mixtures. Evaluating the fluid properties at the mean temperature, the coefficient Kd in 
a CT unit is given by 

where y o  must be replaced by zero for LH columns. 
When TD units are used in separation tasks, large ATvalues are required. Thus, it is 

doubtful that the present formulation can be used to describe such situations correctly. 
On the contrary, the measurement of D and DT coefficients is performed in columns 
with relatively small ATvalues. This fact, added to some previous work by our group 
(Navarro et a1 1983), allows one to use the foregoing theoretical results confidently. 

Kd = Jcp*D*Y!(l - yi) (25) 

6. The column separation 

The overall separation between the column ends is currently measured by the Rayleigh 
separation factor, q. At steady state, it is given by 

where L is the column total length. Equation (26) shows that the shape factor com- 
bination relevant in the steady-state separation is just h/k.  Figure 3 displays the values 
of h / k  for LH and CT heating modes. For the LH case, this quantity is about unity and 
changes little in all the range of fi o/rl .  On the contrary, for CT columns, h / k  increases 
strongly with r2/r1.  In particular, for r2/r1 = 1, h/k  tends to infinity as [l - (r2/rl)]-4 
(see below), and then equation (26) gives for the steady-state separation the well known 
dependence with the annular gap width, w, 

In q = H L / K ,  = (9!/6!)(a*D*r]*/p*p*T*g)(L/r!)(h/k) (26) 

In q L w - ~ .  
On the other hand, it has been reported (Ecenarro eraZl990) that the time evolution 

of the separation, with the exception of the earlier stages of the process, is well described 
by an exponential growth with a characteristic relaxation time constant, r,, given by 

where p is the fluid mass per unit length. Taking into account equation (16) for K,, we 
obtain for CT columns 

t, = , u L ~ / J ~ ~ K ,  (27) 

rr = (9!r]*2D*/~2p*2p*2g2)(L/AT)2 ( r i  - r2  2 H r W  (28) 
and the same expression holds for the LH case by using the corresponding shape factor 
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Figure 3. Values of h/k for LH and CT modes. 

k and taking r2 = 0. When non-active spaces or forgotten effect are to be accounted for, 
actual values of tr are obtained from equation (28) through suitable correction factors 
available in the literature (Ecenarro et a1 1990). 

7. Limit cases 

For CT units, there are two geometrical limit cases that correspond to r2 / r1  = 1 and 
r2/rl = 0. These were so-called by Furry et a1 (1946) the plane case and the extreme 
cylindrical case, respectively. It is useful to obtain approximate expressions of h and k 
for these two cases. For the plane case, the comparison of the well known results of 
Furry et a1 with equations (16) yields 

For the extreme cylindrical case, from the Slieker expressions of h and k for small values 
of r2 / r1 ,  it is easy to obtain in the limit (r2/r1) +. 0 that 
h = 45 [ln(r2/r1)]-*/l6 k = 1575 [ln(r2/rl)]-2/512 h/k = 32/35. (30) 

For light-heated units, the extreme cylindrical case corresponds to the situation 
where an extremely fine hot wire is replaced by a very narrow light beam. In both cases, 
almost all of the fluid mixture remains at the temperature T1 of the cold wall, whereas 
only a small region of the fluid close to the symmetry axis is heated. It is obvious that the 
thermal fields are the same in both cases, and, consequently, the convection patterns 
are also identical. This fact ensures that equation (30) can be used to describe the extreme 
cylindrical case in LH units by simply replacing (r2/r1) by the corresponding variable 
fi u/rl. The numerical results confirm this conclusion. 

In LH units, there is not a situation equivalent to the plane case. However, there 
exists another limit case that corresponds to the fluid being heated by means of a largely 
expanded light beam, i.e. xo = 0. As has been referred to above, the lowest order of 
approximation for x o  = 0 leads to a temperature profile linear in x ,  

Calculations of the shape factors for this temperature field can be easily performed 

h = [1 - (r2/r1)13 k = [1 - (r2/r1)17 h/k = [l - (r2/rl)]-4. (29) 

T - T1 = AT(1 - x /x~) .  (31) 
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analytically, although details will not be given here for the sake of brevity. The final 
results for xo  = 0 are 

h = 518 k = 21/32 hlk = 20121. (32) 
As can be seen in figure 2, these results hold approximately for fi o / r l  2 1. 

8. Discussion 

The high insensitivity of the h/k  quantity to the light beam width is surprising (the 
maximum deviation is lower than 5% in all the xo  range). This means that the steady 
separation is largely independent of the temperature profiles in the tube. From a 
technical point of view, this result offers some clear experimental advantages, as regards 
the precision of the measured separation data. Although discussions on the power 
consumption of these units are not relevant here, it can however be noticed from 
equation (7)  that large U values will demand in practice correspondingly high power 
inputs in order to maintain a fixed ATvalue. 

Figure 3 makes it evident that h/k  values for CT units with quasi-plane geometry are 
larger than the LH ones, which are always close to unity. However, the additional 
dependence of the steady separation on rT4 makes the performances of LH configurations 
comparable to the standard ones. In fact, equations (26) and (28) together with equations 
(29) and (30) show that, for example, a small-size LH column with rl  = 1 mm and L = 
250 mm has steady-state separations and relaxation times similar to a conventional CT 
quasi-plane column of the same length and an annular gap width of w = 1 mm. This 
result added to the constructional and operational advantages of such simple LH units 
shows that this heating mode can convert thermogravitation into an attractive method 
to determine diffusion properties in liquid mixtures. 
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